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Abstract:

Energy-efficient driving methods have become important with the emerging concern for sustainable mobility and rapid
acceptance of battery electric vehicles. Eco-driving, being a very broad topic, can be optimized using Model Predictive
Control (MPC) and Deep Reinforcement Learning (DRL) as two promising options. An MPC builds a structured
framework that predicts the vehicle's future states and optimizes control over a finite time horizon so as to maximize the
control of speed, acceleration, and regenerative braking under varying traffic and road conditions. Recent literature has
established MPC as a valid tool to incorporate real-time information into predictive eco-driving; for example, V2V, V2I,
and SPaT information. On the other hand, DRL learns from data to build adaptive control policies in dynamic traffic
scenarios, tackling challenges of uncertainties, complex interactions, and long-term objectives. Combining MPC and DRL
yields a good combination of short-term precision and long-term adaptability, forming a hybrid framework capable of
addressing real-world barriers such as delays in communication, computational constraints, and the unpredictability of
traffic. This paper presents a survey of recent developments in the application of MPC- and DRL-based eco-driving systems
targeting BEVs, comparing their approaches, potential, and limitations. It also discusses their applications in predictive
cruise control, cooperative driving, and multi-agent traffic systems. Finally, the paper identifies gaps in the research and
points out the research agenda into large-scale validation, generalization across disparate driving scenarios, and on
robustness under uncertainty toward energy-efficient public transport and sustainable EV mobility.

Keywords: Model Predictive Control, Deep Reinforcement Learning, Eco-Driving, Battery Electric Vehicles, Energy
Management, Sustainable.

I. INTRODUCTION

The evolutionary trajectory of transportation sustainability is recognized worldwide as a solution to the problems of energy
shortage, air pollution, and climate change [1]. The emissions from traditional internal combustion engine (ICE) vehicles
have driven the demand for cleaner and more energy-efficient alternatives. Battery electric vehicles came forth as a much
needed option, providing zero tailpipe emissions, minimizing fossil fuel use, and making use of renewable energy.
Nevertheless, the limited driving range and the energy hungry nature of BEVs are primary concerns that present obstacles
in adoption. Thus, optimizing energy efficiency using intelligent eco-driving strategies is quite necessary in extracting the
best performance from a vehicle and helping with the sustainability goals of green mobility [2].

Eco-driving encompasses driving behaviors and control strategies wherein energy consumption is optimized and
unnecessary acceleration, braking, and idling are avoided while employing regenerative braking and predictive route
planning. For BEVS, eco-driving offers benefits such as improving range, battery longevity, and lower operational costs.
The arrival of recent-generation EMS has allowed for decision-making and control in real-time with respect to changing
traffic scenarios, driver behavior, and road environment [3]. To this end, research in developing control has heavily focused
on Model Predictive Control and Deep Reinforcement Learning [4]. Model Predictive Control (MPC) is a general
framework for optimization that predicts future vehicle dynamics and selects the best control inputs over a certain finite
horizon. Constraints can be incorporated in MPC, which makes it very useful for eco-driving [5]. Predictive cruise control,
adaptive energy management, and cooperative driving strategies could be fields where MPC reduces energy consumption
but maintains safety and comfort of the vehicle. They face the issues related to computational demand and robustness under
uncertain and dynamic driving environments.DRL complements MPC by being a data-driven approach to adaptive and
long-term decision-making. By interacting with the environment, DRL agents learn optimal driving policies with respect
to energy efficiency, safety, and comfort. Recent studies have applied DRL to complex urban traffic, signalized
intersections, and mixed traffic flow scenarios for eco-driving, demonstrating significant simulated energy savings [6].
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Moreover, hierarchical and multi-agent DRL designs have extended the eco-driving approaches to cooperative vehicular
systems to further augment traffic efficiency. Outstanding issues include high sample complexity, limited generalization
with respect to routes, and dependence on simulation-based training [7].

The merging of MPC and DRL sets forth a hybrid paradigm wherein the prediction potential of MPC meshes with the
adaptability of DRL. It operates on the short-horizon optimization and long-term energy management that opens up avenues
for resilience against uncertainties during actual driving [8]. Besides, developments in connected and automated vehicle
(CAV) technologies, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V21) communications, and intelligent
horizons usher in new possibilities for predictive eco-driving and help to build cooperative and sustainable transportation
ecosystems. Figure 1: The EMS structure for connected HEVS/PHEVS.
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Figure 1: The EMS structure for connected HEVS/PHEVS.

This study is an attempt to analyze recent advances in MPC and DRL-based eco-driving methods for BEVs. It draws
together various methodologies, showcases contributions, and brings out limitations to existing research. The paper ends
with a set of open issues to be addressed and research priorities for developing a robust, scalable, and intelligent eco-driving
framework serving as a potential bridge in the transition to energy-efficient and sustainable electric mobility.

A. Evolution of Hybrid Electric Vehicles (HEVS)

Hybrid electric automotive evolution began with Ferdinand Porsche's design of the Lohner-Porsche Mixte in 1901: the first
hybrid car that combined an internal combustion engine with wheel-mounted electric motors. After this early innovation,
interest waned in the past, as petroleum became cheap and available aplenty [11]. During the 1970s, the oil crisis put the
limelight once again on fuel-efficient alternatives and zoomed research on hybrid powertrains. Enter 1997, when Toyota
thrust the industry into an era with the introduction of the first mass-produced HEV: the Prius-which became a global
synonym for fuel economy and reduced emissions [12]. The 2000s witnessed an explosion of growth with improvements
in nickel-metal hydride and lithium-ion batteries, regenerative braking, and power electronics. By the 2010s, glimmered
plug-in HEVs that took hybrid technology to the next step, further extending electric-only driving and fossil-fuel
dependency reduction. With the integration of intelligent control algorithms, predictive energy management, and eco-
driving strategies, performance enhancements followed [13]. The present-day HEV occupies the ever-evolving artificial
intelligence, connectivity to lambda of renewable energy services and coupling into the fully electric and sustainable
transport systems.

1. WORKING PRINCIPLES OF ENERGY MANAGEMENT SYSTEMS (EMS)

Energy Management System (EMS) typically serves as the brain of the vehicle and thus acts by achieving optimal
coordination between ICE, electric motor, and energy storage systems in the case of a hybrid electric vehicle (HEV) or
plug-in hybrid electric vehicle (PHEV) [14]. However, EMS tends to balance power demand and supply while attempting
to save fuel, reduce pollutant emissions, and satisfy some other aspects of vehicle performance. It must decide when the
ICE should operate, when the electric motor should assist, and when to draw energy from or store energy into the battery
[15]. Keeping the battery charge within Automotive SOC limits prolongs battery life by preventing either too much use or
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discharge of the battery. Regenerative braking is also under the control of the EMS system, which allows the recovery of
kinetic energy during deceleration and conversion of this kinetic energy into usable electrical energy, hence improving fuel
economy [16].
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Figure 2: A schematic diagram of an Energy Management System (EMS)

The figure 2 represents the functioning of an Energy Management System (EMS) in modern power grids, showing how
data is collected, processed, and used for control and optimization. At the field level, Remote Terminal Units (RTUS) in
substations measure electrical parameters such as bus voltages, line flows, generator outputs, and breaker or switch statuses.
These measurements are transmitted via the Cyber (communications) equipment, which acts as the communication
backbone between substations and the control center, carrying both measurement data upstream and generation control
signals downstream. The Topology Processor then interprets breaker and switch statuses to determine the real-time
connectivity of the grid, providing the network model to the State Estimation (SE) function. SE fuses raw measurements
with the topology to compute the most accurate snapshot of the system states (bus voltages and angles), filtering out bad
or noisy data. These system states feed into higher-level applications: the Automatic Generation Control (AGC), Optimal
Power Flow (OPF), and Contingency Analysis (CA).

AGC maintains system frequency and scheduled tie-line exchanges by adjusting generator outputs in real time, sending
control signals back through the cyber layer. OPF uses the estimated system states to optimize generator dispatch
economically while ensuring operational limits like line capacity and voltage are respected. Meanwhile, Contingency
Analysis evaluates the system’s resilience under potential failures (e.g., a line or generator outage), helping operators or
automated systems ensure reliability. These applications are interdependent—OPF provides economic setpoints, CA
verifies their security, and AGC makes fine real-time adjustments to track them while stabilizing the system. Overall, the
EMS continuously cycles through data acquisition, state estimation, optimization, security analysis, and control, ensuring
that the grid operates reliably, economically, and securely.

Further, beyond internal vehicle dynamics and decision-making, advanced EMS has an integration with external sources
of information for predictive and adaptive decision-making. Using GPS, road-gradient data, ITS, V2V communication,
and V2l communication, the EMS may forecast traffic conditions, anticipate power requirements, and adjust its control
strategies in real-time [17]. For example, when approaching a traffic signal, the EMS may start the hybrid engine in electric
mode and prevent wasting fuel while idling. While going uphill, it gives priority to ICE power and preserves battery charge.
These external inputs for hybrid EMS development uplift the efficiency, reliability, and sustainability levels of hybrid
vehicles and truly form a hybrid EMS as a predictive intelligent control system rather than a reactive system [18].

In a typical single-vehicle EMS, the power split would be optimized initially between the engine and electric motor,
according to various objective functions depending on operating conditions, such as fuel consumption, battery life, and
emissions. Predictive models, eco-driving techniques, and route or terrain preview data all allow decisions to be exercised
online, as seen in Figure 3. Eco-driving methods, such as keeping a steady speed, anticipating traffic lights through V21
data, working on route planning, applying mild acceleration control, and maximizing regenerative braking, can all
contribute toward destroying fuel consumption and extending battery life and overall energy efficiency [19]
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Figure 3: The scenario of the single-vehicle energy management.

Predictive control in single-vehicle EMS further enhances this by predicting future driving conditions like road slope,
velocity, and traffic flow, allowing for optimum power distribution between the engine and motor in advance. Equipped
with GPS and Intelligent Transportation Systems (ITS), predictive EMS modernizes the operating points dynamically for
best fuel consumption, emission reductions, and efficient battery use, with smoothness retained [20] Going beyond the
single-car systems, double-vehicle energy management techniques are designed for car-following scenarios where the
following vehicle adapts to the leader's speed, braking intention, and road conditions through V2V communications as a
cooperating agent for efficient regenerative braking, reduced friction braking, safety, and energy efficiency, as depicted in
Figure 4 [21]
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Figure 4: Double-Vehicle Energy Management Strategies

Extending this out, multi-vehicle EMS frameworks aim for coordinated energy management across vehicle platoons
maintaining synchronous speeds and close distances through V2V/V2l communications. Sharing real-time information
such as velocity, slope, driver intent, and battery state, these systems address aerodynamic drag, regenerative braking, load
balancing between the vehicles, and sustainability on the ecosystem level, as indicated in Figure 5 [22]. Still, a great deal
remains to be resolved; current EMS designs are mainly run on predetermined driving cycles and fail to respond in real-
time, scarce use of external data sources; issues in terms of communication delay, controller response time, and opposing
objectives between fuel consumption and emission reduction all slow down further development. Therefore, getting
adaptive, robust, and intelligent energy management strategies remains a burning area to explore in the sincere pursuit of
sustainable hybrid and electric vehicles [23].
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Figure 5: Multi-Vehicle Energy Management Strategies

I1l. DEEP REINFORCEMENT LEARNING (DRL) APPROACHES FOR ECO-DRIVING

Transfer learning and domain adaptation have been tried in the hopes of better generalization of DRL-based eco-driving
policies across cities and routes, although distribution shifts in unseen traffic require fine-tuning [19]. However, hybrid
DRL-model-based approaches have also been proposed, where DRL generates reference trajectories, while MPC executes
final control; however, the coordination between learned- and model-based modules is limited [20]. DRL has also been
applied to maximize low-level control in connected and automated vehicles by speed planning only, while classical
controllers handle longitudinal and lateral dynamics, the performance of which significantly decreases due to actuator
constraints and very high V2X communication latency [21]. Autonomous eco-driving within mixed traffic conditions has
been examined on benchmark data such as pPNEUMA, and on algorithms such as PPO and DDPG; however, these datasets
lack real-world variability and sensor noise, limiting their use [22]. Multi-objective DRL with heuristic reward shaping has
been introduced for achieving a trade-off between safety, efficiency, and comfort in urban eco-driving, but studies found
this approach limited to the considered scenarios and not generalizable [23]. For heavy-duty vehicles such as electric buses
or trucks, hierarchical DRL strategies are proposed, separating route-level planning from short-horizon control that includes
regenerative braking, and real-world elements such as cargo load and road slopes are still insufficiently considered [24]. In
the meanwhile, new benchmarks and simulation environments for evaluation of DRL-based eco-driving have been
provided to allow for a more systematic comparison of algorithms, but the absence of standardized metrics to balance
energy, comfort, and safety, combined with issues concerning reproducibility, is still a major bottleneck [25].

Table 1: Deep Reinforcement Learning (DRL) Approaches for Eco-Driving

Ref Method / Approach Key Findings Results / Findings Limitations
Transfer learning & | Transfer learning improves | Better generalization in | Distribution  shifts in
[19] | domain adaptation for | policy generalization across | unseen environments unseen traffic still require
DRL eco-driving cities/routes fine-tuning
Hybrid DRL-model- | Combining DRL and model- | DRL generated | Coordination between
[20] | based eco-driving based control can improve | reference trajectories; | DRL and model-based
trajectory tracking MPC executed final | modules is brittle
control
Hybrid DRL for low- | Hybrid control enhances | DRL  +  classical | Actuator constraints limit
[21] | level CAV control speed  planning  while | controllers; improved | DRL exploration; V2X
retaining stability energy efficiency latency reduces
performance
DRL autonomous eco- | DRL effectively learns eco- | PPO/DDPG  reduced | Benchmark lacks real-
[22] | driving in mixed traffic | driving behaviors from | energy consumption in | world  variability and
using benchmark datasets | benchmark data simulation sensor noise
(pPNEUMA)
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Multi-objective DRL | Heuristic reward shaping | Improved urban eco- | Objective weighting
[23] | with heuristic reward | balances safety, comfort, | driving performance in | scenario-dependent; lacks
shaping and efficiency simulation generality
Hierarchical DRL for | Hierarchical structure allows | Improved energy | Heavy-vehicle dynamics
[24] | electric buses and trucks | separation of route-level and | efficiency; (cargo, slopes) not fully
short-horizon control regenerative  braking | captured in simulations
utilized
DRL benchmarks and | Standardized simulation | Enabled systematic | Benchmarks lack
[25] | simulation environments | environments facilitate fair | comparison of DRL | standardized metrics
algorithm comparison algorithms combining energy,
comfort, safety;
reproducibility issues
remain
[26] | Hybrid energy- ML -assisted control Simulation shows Large-scale on-vehicle
management strategy improves energy capture improved peak-power | trials and long-term
integrating Li-ion and reduces battery stress handling and smoother | reliability not reported
batteries & energy distribution
supercapacitors with
ML -assisted control
[27] | Comprehensive survey Survey highlights key Comparative analysis No new experimental
of battery—supercapacitor | design considerations, of HESS topologies results; practical
HESS sizing, and control and energy/power validation in EVs lacking
strategies efficiency
[28] | Predictive cruise control | Supercapacitors enhance Simulation shows Limited component-level
using ANN-based energy | energy recovery by reduced battery load characterization of
model with absorbing/releasing braking | fluctuations and supercapacitors;
supercapacitor buffer pulses improved fuel efficiency and thermal
economy behavior not fully
explored
[29] | Regenerative braking Dynamic power-sharing can | Simulation indicates Validation largely
model for battery— reduce battery degradation improvements in simulation-based; limited
supercapacitor HESS and increase energy energy efficiency and real-vehicle testing
with dynamic power- recovery battery cycle life
sharing
[30] | Optimal sizing & control | Optimal sizing enhances Experimental testbed Findings not directly
for stationary hybrid energy recuperation and results confirm generalizable to light-
energy storage systems load handling improved energy vehicle dynamics
using supercapacitors recovery
[31] | Graphene-derived Improved specific energy Electrochemical Scalability to full
electrodes for high- and power density; faster analysis shows automotive modules and
energy supercapacitors charge/discharge enhanced braking real driving integration
energy capture unproven
[32] | Survey of emerging Highlights materials, Comparative analysis Translation from device-
supercapacitor devices fabrication, energy of supercapacitor level improvements to full
and system-level management strategies, and | performance, cost, and | system performance not
applications system-level design energy density experimentally validated
considerations
[33] | Battery—supercapacitor-- | Hybrid HESS improves Control strategies Practical vehicle
fed BLDC drive with real-time energy efficiency | validated in hardware- | integration and cost
HIL testing and torque response in-the-loop simulation | implications not fully
addressed
[34] | Comparison of Supercapacitors achieve Simulation shows Long-term cycling
supercapacitor and faster charge acceptance reduced battery stress | effects, thermal
battery performance and improved peak-power and potential longer management, and
under regenerative handling cycle life repeated braking
braking reliability unexplored
[35] | Experimental test rig High-power pulses handled | Voltage, current, and Vehicle integration,

evaluation of
supercapacitor module

without significant
degradation

thermal behavior
measured under
various load profiles

packaging constraints,
and real-world application
not addressed
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[36] | Nanosheet-based High specific energy, fast Electrochemical tests Full-module scaling,
graphitic electrodes for charge/discharge, and stable | show improved automotive reliability, and
regenerative cycling capacitance and cycle | long-term durability
supercapacitors stability uncertain

[37] | Energy management and | Optimization strategies Simulation shows Translation to passenger
sizing for supercapacitor- | improve energy recovery better hybrid storage vehicles requires further
based HESS in DC and load balancing ratios and converter investigation
traction selection

[38] | Green-synthesized Ni—-Fe | Eco-friendly synthesis with | Electrochemical tests Module-level balancing,
LDH nanosheet high capacitance show good rate ESR control, and large-
electrodes for capability and cycle scale reliability not fully
regenerative stability resolved
supercapacitors

[39] | Broad review of Summarizes materials, Highlights improved Experimental validation
regenerative braking and | control strategies, energy battery life, energy and practical solutions for
HESS recovery mechanisms recuperation, system cost/packaging gaps

flexibility absent

[40] | Emerging high-energy- Potential for regenerative Evaluates energy Reliant on manufacturer
density supercapacitor braking in hybrid/pure EVs | density, power data; peer-reviewed
products capabilities, and validation needed for

efficiency adoption

[41] | Advanced HESS control | Optimized energy flow and | Simulation and bench | Real-world performance,
strategies and converter improved energy recovery testing confirm scalability, and economic
topologies (up to 40%) efficiency feasibility not fully

improvements addressed

The hybrid energy management strategy for Li-ion batteries and supercapacitors using another machine-learning
paradigms-based control structure was proposed in order to capture maximum regenerative energy from braking events
while minimizing battery stress for life extension. From simulations, the advantageous capability of peak power handling
with smooth sharing of energy to the energy storage devices was noted, but large-scale testing and long-term reliability
trials are not available yet [26]. An elaborate review of battery—supercapacitor HESS has addressed issues on sizing, control
strategies, power electronics, and regenerative braking integration, with comparison and contrasted HESS topologies under
different driving profiles that could highlight their potential benefits, but real EV evaluation remains scarce [27]. Predictive
cruise control strategies with buffers in the form of supercapacitors have demonstrated improved energy recovery, reduced
battery load variations, and hence thereby better fuel economy, emphasizing the need for correct energy estimations. Yet,
the few characterizations of supercapacitors that include efficiency losses and thermal behavior hinder a great deal of their
applicability [28].

Models for regenerative braking for battery supercapacitor HESS promise life optimization for the battery and
maximization of energy recuperation by means of dynamic power transfer, but most of the validation is still simulation-
based and with very little road testing in real vehicles [29]. Optimal sizing and control methods that have been tested on
stationary systems indicate improved recuperation, but generalizing to light vehicle dynamics is still left incomplete [30].
High-energy electrode materials such as graphene derivatives enable better charge-discharge rates and higher energy
densities but are unvalidated in terms of being incorporated into complete automotive level modules, let alone in scaled-
up real-life testing scenarios [31]. Recent reviews into new supercapacitor technologies are also highlighting some issues
such as thermal management, long-term durability, and system-level integration; with little experimental rehabilitation
from material-level advancement [32]. The HILS test of hybrid supercapacitor-battery systems verified the energy recovery
efficiencies and improvements in torque responses, but the large vehicle integration and cost feasibility remain unanswered
[33].

Compared with regenerative braking, supercapacitors quickly accept charge and realize instantaneous peak power, thus
reducing the aging of the batteries and improving their cycle life. Nevertheless, thermal management and long-term cycling
performance are not adequately studied [34]. Experimental test rigs have shown that supercapacitors can take very high-
power pulses with negligible degradation, but packaging constraints and real-world implementations are not entirely
addressed [35]. Nanosheet-based electrodes may present exciting possibilities for integration due to their high specific
energy and stability, but whether they can hold durability under automotive conditions remains unknown [36]. Whereas
optimization studies of energy management and sizing strategies for supercapacitor-based HESS in traction applications
increase load balancing, more investigation must be conducted for passenger vehicles [37].

These eco-friendly synthesized nanosheet electrodes for use in regenerative braking applications have shown strong

capacitance and cycling stability, but module balancing and large-scale reliability continue to be areas of concern [38].
General reviews on regenerative braking systems point out an extension of battery life and energy recuperation as the major
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benefits; however, packaging, costing, and thermal management issues are also highlighted [39]. In principle, high-energy-
density supercapacitors were envisioned to be efficient gadgets of energy conversion in hybrid and electric vehicles. Still,
independent verification beyond that available from the manufacturer is necessary [40]. Lastly, energy recovery
enhancements of up to 40% have been reported through the use of advanced control strategies and converter topologies,
but remaining open discussions concern the scalability, economic feasibility, and real-life implementation of these
approaches [41].

IV. ARTIFICIAL INTELLIGENCE IN ELECTRIC VEHICLES FOR MOBILITY OPTIMIZATION

Human translation: For demand-side management inside microgrids via Generative Al and LLMs, focus has been laid upon
EV charging synchronization. But whether it works in the big urban situation is still untested [42]. A hybrid approach
involving LLMs and Graph Neural Networks (GNNSs) reportedly outperforms traditional methods for EV charging
optimization but has to be tested against real-time dynamic grid conditions [43]. Privacy-preserving predictive approaches,
such as Federated Learning Transformer Networks (FLTN), have been put forth to predict EV charge location with high
accuracy without risking user data, but whether this method can generalize despite changes in geographies has yet to be
ascertained [44]. Al and ML were applied in scenarios of V2X to conduct proactive handover and resource allocation for
conserving energy and with quality of service considerations. However, these methods have still to be extensively tested
in different network environments [45]. Another generative Al approach has been used for energy optimization and vehicle
design enhancements; yet many findings were limited because they relied quite heavily on statistical methods without much
real-world validation [46]. Optimization frameworks based on Al for solar PV and battery energy storage systems promise
smart EV charging for high-density residential places, whereas scaling that up for a larger urban deployment remains
unaddressed [47].

Deep neural networks have been applied to scheduling EV ride-hailing fleet charging toward the objectives of cost and
emission reduction, while lingering issues remain as to their applicability to fleets of different sizes and usage pattern [48].
Al-based methods of optimizing an EV charging network have been proposed for better efficiency and user experience
based on real-time analytics, but the actual practical incorporation of such designs into real-time infrastructure poses major
challenges [49]. Ambient-level studies describe the role of Al in future EV technology, in particular its integration with
IoT and big data for advanced energy management systems, but many of such studies lack empirical validation [50]. And
then, hybrid Al-based frameworks using reinforcement learning and grid-aware scheduling have been proposed for fine
optimization of residential EV charging systems in real time, but have not yet been optimally challenged for robustness
under diversifying grid conditions [51].

V. CONCLUSION AND FUTURE WORK

This review discusses a range of energy-efficient eco-driving approaches for battery electric vehicles (BEVS), which
combine MPC, DRL, and hybrid energy storage methods. The survey has found that MPC can perform short-term
predictive optimization by modeling vehicle dynamics, gradients of the road, and traffic information within a constraint-
based setting. It works well and with varying degrees of success for predictive cruise control, adaptive energy management,
and cooperative driving, yet its real-world application is problematic due to computational difficulties and the uncertainties
of real-world environments. DRL, on the other hand, provides adaptability in complex and dynamic traffic situations via
learning-based policy optimization. Although it has proven very useful in mixed traffic and urban scenarios, its training
complexity, dependence on simulated environments, and limited scope to generalize to various real-world settings
constitute some of the challenges still existing. Hybrid combinations of MPC and DRL use the strength of either, giving
short-term accuracy and long-term adaptability. Back to the same analogy, hybrid energy storage systems that combine
supercapacitors and batteries hold potential to optimize braking efficiency, reduce aging of batteries, and prolong system
life. Recent advances in Al, including generative Al, federated learning, and graph neural networks, extend the possibilities
for optimal EV charging, fleet management, and mobility services.The future must witness the development of robust,
generalizable, and cheaper eco-driving frameworks that integrate MPC, DRL, and sophisticated HESS solutions. With
future improvements, such implementations will go a long way toward energy-efficient and sustainable electric driving.
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