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Abstract:  

Energy-efficient driving methods have become important with the emerging concern for sustainable mobility and rapid 

acceptance of battery electric vehicles. Eco-driving, being a very broad topic, can be optimized using Model Predictive 

Control (MPC) and Deep Reinforcement Learning (DRL) as two promising options. An MPC builds a structured 

framework that predicts the vehicle's future states and optimizes control over a finite time horizon so as to maximize the 

control of speed, acceleration, and regenerative braking under varying traffic and road conditions. Recent literature has 

established MPC as a valid tool to incorporate real-time information into predictive eco-driving; for example, V2V, V2I, 

and SPaT information. On the other hand, DRL learns from data to build adaptive control policies in dynamic traffic 

scenarios, tackling challenges of uncertainties, complex interactions, and long-term objectives. Combining MPC and DRL 

yields a good combination of short-term precision and long-term adaptability, forming a hybrid framework capable of 

addressing real-world barriers such as delays in communication, computational constraints, and the unpredictability of 

traffic. This paper presents a survey of recent developments in the application of MPC- and DRL-based eco-driving systems 

targeting BEVs, comparing their approaches, potential, and limitations. It also discusses their applications in predictive 

cruise control, cooperative driving, and multi-agent traffic systems. Finally, the paper identifies gaps in the research and 

points out the research agenda into large-scale validation, generalization across disparate driving scenarios, and on 

robustness under uncertainty toward energy-efficient public transport and sustainable EV mobility.   

Keywords: Model Predictive Control, Deep Reinforcement Learning, Eco-Driving, Battery Electric Vehicles, Energy 

Management, Sustainable.

 

I. INTRODUCTION 

The evolutionary trajectory of transportation sustainability is recognized worldwide as a solution to the problems of energy 

shortage, air pollution, and climate change [1]. The emissions from traditional internal combustion engine (ICE) vehicles 

have driven the demand for cleaner and more energy-efficient alternatives. Battery electric vehicles came forth as a much 

needed option, providing zero tailpipe emissions, minimizing fossil fuel use, and making use of renewable energy. 

Nevertheless, the limited driving range and the energy hungry nature of BEVs are primary concerns that present obstacles 

in adoption. Thus, optimizing energy efficiency using intelligent eco-driving strategies is quite necessary in extracting the 

best performance from a vehicle and helping with the sustainability goals of green mobility [2]. 

 

Eco-driving encompasses driving behaviors and control strategies wherein energy consumption is optimized and 

unnecessary acceleration, braking, and idling are avoided while employing regenerative braking and predictive route 

planning. For BEVs, eco-driving offers benefits such as improving range, battery longevity, and lower operational costs. 

The arrival of recent-generation EMS has allowed for decision-making and control in real-time with respect to changing 

traffic scenarios, driver behavior, and road environment [3]. To this end, research in developing control has heavily focused 

on Model Predictive Control and Deep Reinforcement Learning [4]. Model Predictive Control (MPC) is a general 

framework for optimization that predicts future vehicle dynamics and selects the best control inputs over a certain finite 

horizon. Constraints can be incorporated in MPC, which makes it very useful for eco-driving [5]. Predictive cruise control, 

adaptive energy management, and cooperative driving strategies could be fields where MPC reduces energy consumption 

but maintains safety and comfort of the vehicle. They face the issues related to computational demand and robustness under 

uncertain and dynamic driving environments.DRL complements MPC by being a data-driven approach to adaptive and 

long-term decision-making. By interacting with the environment, DRL agents learn optimal driving policies with respect 

to energy efficiency, safety, and comfort. Recent studies have applied DRL to complex urban traffic, signalized 

intersections, and mixed traffic flow scenarios for eco-driving, demonstrating significant simulated energy savings [6]. 
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Moreover, hierarchical and multi-agent DRL designs have extended the eco-driving approaches to cooperative vehicular 

systems to further augment traffic efficiency. Outstanding issues include high sample complexity, limited generalization 

with respect to routes, and dependence on simulation-based training [7]. 

 

The merging of MPC and DRL sets forth a hybrid paradigm wherein the prediction potential of MPC meshes with the 

adaptability of DRL. It operates on the short-horizon optimization and long-term energy management that opens up avenues 

for resilience against uncertainties during actual driving [8]. Besides, developments in connected and automated vehicle 

(CAV) technologies, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, and intelligent 

horizons usher in new possibilities for predictive eco-driving and help to build cooperative and sustainable transportation 

ecosystems. Figure 1: The EMS structure for connected HEVs/PHEVs. 

 

 
Figure 1: The EMS structure for connected HEVs/PHEVs. 

 

This study is an attempt to analyze recent advances in MPC and DRL-based eco-driving methods for BEVs. It draws 

together various methodologies, showcases contributions, and brings out limitations to existing research. The paper ends 

with a set of open issues to be addressed and research priorities for developing a robust, scalable, and intelligent eco-driving 

framework serving as a potential bridge in the transition to energy-efficient and sustainable electric mobility. 

 

A. Evolution of Hybrid Electric Vehicles (HEVs) 

 

Hybrid electric automotive evolution began with Ferdinand Porsche's design of the Lohner-Porsche Mixte in 1901: the first 

hybrid car that combined an internal combustion engine with wheel-mounted electric motors. After this early innovation, 

interest waned in the past, as petroleum became cheap and available aplenty [11]. During the 1970s, the oil crisis put the 

limelight once again on fuel-efficient alternatives and zoomed research on hybrid powertrains. Enter 1997, when Toyota 

thrust the industry into an era with the introduction of the first mass-produced HEV: the Prius-which became a global 

synonym for fuel economy and reduced emissions [12]. The 2000s witnessed an explosion of growth with improvements 

in nickel-metal hydride and lithium-ion batteries, regenerative braking, and power electronics. By the 2010s, glimmered 

plug-in HEVs that took hybrid technology to the next step, further extending electric-only driving and fossil-fuel 

dependency reduction. With the integration of intelligent control algorithms, predictive energy management, and eco-

driving strategies, performance enhancements followed [13]. The present-day HEV occupies the ever-evolving artificial 

intelligence, connectivity to lambda of renewable energy services and coupling into the fully electric and sustainable 

transport systems. 

II. WORKING PRINCIPLES OF ENERGY MANAGEMENT SYSTEMS (EMS) 

Energy Management System (EMS) typically serves as the brain of the vehicle and thus acts by achieving optimal 

coordination between ICE, electric motor, and energy storage systems in the case of a hybrid electric vehicle (HEV) or 

plug-in hybrid electric vehicle (PHEV) [14]. However, EMS tends to balance power demand and supply while attempting 

to save fuel, reduce pollutant emissions, and satisfy some other aspects of vehicle performance. It must decide when the 

ICE should operate, when the electric motor should assist, and when to draw energy from or store energy into the battery 

[15]. Keeping the battery charge within Automotive SOC limits prolongs battery life by preventing either too much use or 
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discharge of the battery. Regenerative braking is also under the control of the EMS system, which allows the recovery of 

kinetic energy during deceleration and conversion of this kinetic energy into usable electrical energy, hence improving fuel 

economy [16]. 

 
Figure 2: A schematic diagram of an Energy Management System (EMS) 

 

The figure 2 represents the functioning of an Energy Management System (EMS) in modern power grids, showing how 

data is collected, processed, and used for control and optimization. At the field level, Remote Terminal Units (RTUs) in 

substations measure electrical parameters such as bus voltages, line flows, generator outputs, and breaker or switch statuses. 

These measurements are transmitted via the Cyber (communications) equipment, which acts as the communication 

backbone between substations and the control center, carrying both measurement data upstream and generation control 

signals downstream. The Topology Processor then interprets breaker and switch statuses to determine the real-time 

connectivity of the grid, providing the network model to the State Estimation (SE) function. SE fuses raw measurements 

with the topology to compute the most accurate snapshot of the system states (bus voltages and angles), filtering out bad 

or noisy data. These system states feed into higher-level applications: the Automatic Generation Control (AGC), Optimal 

Power Flow (OPF), and Contingency Analysis (CA). 

AGC maintains system frequency and scheduled tie-line exchanges by adjusting generator outputs in real time, sending 

control signals back through the cyber layer. OPF uses the estimated system states to optimize generator dispatch 

economically while ensuring operational limits like line capacity and voltage are respected. Meanwhile, Contingency 

Analysis evaluates the system’s resilience under potential failures (e.g., a line or generator outage), helping operators or 

automated systems ensure reliability. These applications are interdependent—OPF provides economic setpoints, CA 

verifies their security, and AGC makes fine real-time adjustments to track them while stabilizing the system. Overall, the 

EMS continuously cycles through data acquisition, state estimation, optimization, security analysis, and control, ensuring 

that the grid operates reliably, economically, and securely. 

 

Further, beyond internal vehicle dynamics and decision-making, advanced EMS has an integration with external sources 

of information for predictive and adaptive decision-making. Using GPS, road-gradient data, ITS, V2V communication, 

and V2I communication, the EMS may forecast traffic conditions, anticipate power requirements, and adjust its control 

strategies in real-time [17]. For example, when approaching a traffic signal, the EMS may start the hybrid engine in electric 

mode and prevent wasting fuel while idling. While going uphill, it gives priority to ICE power and preserves battery charge. 

These external inputs for hybrid EMS development uplift the efficiency, reliability, and sustainability levels of hybrid 

vehicles and truly form a hybrid EMS as a predictive intelligent control system rather than a reactive system [18]. 

 

In a typical single-vehicle EMS, the power split would be optimized initially between the engine and electric motor, 

according to various objective functions depending on operating conditions, such as fuel consumption, battery life, and 

emissions. Predictive models, eco-driving techniques, and route or terrain preview data all allow decisions to be exercised 

online, as seen in Figure 3. Eco-driving methods, such as keeping a steady speed, anticipating traffic lights through V2I 

data, working on route planning, applying mild acceleration control, and maximizing regenerative braking, can all 

contribute toward destroying fuel consumption and extending battery life and overall energy efficiency [19]  
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Figure 3: The scenario of the single-vehicle energy management. 

Predictive control in single-vehicle EMS further enhances this by predicting future driving conditions like road slope, 

velocity, and traffic flow, allowing for optimum power distribution between the engine and motor in advance. Equipped 

with GPS and Intelligent Transportation Systems (ITS), predictive EMS modernizes the operating points dynamically for 

best fuel consumption, emission reductions, and efficient battery use, with smoothness retained [20] Going beyond the 

single-car systems, double-vehicle energy management techniques are designed for car-following scenarios where the 

following vehicle adapts to the leader's speed, braking intention, and road conditions through V2V communications as a 

cooperating agent for efficient regenerative braking, reduced friction braking, safety, and energy efficiency, as depicted in 

Figure 4 [21]  

 

Figure 4: Double-Vehicle Energy Management Strategies 

Extending this out, multi-vehicle EMS frameworks aim for coordinated energy management across vehicle platoons 

maintaining synchronous speeds and close distances through V2V/V2I communications. Sharing real-time information 

such as velocity, slope, driver intent, and battery state, these systems address aerodynamic drag, regenerative braking, load 

balancing between the vehicles, and sustainability on the ecosystem level, as indicated in Figure 5 [22]. Still, a great deal 

remains to be resolved; current EMS designs are mainly run on predetermined driving cycles and fail to respond in real-

time, scarce use of external data sources; issues in terms of communication delay, controller response time, and opposing 

objectives between fuel consumption and emission reduction all slow down further development. Therefore, getting 

adaptive, robust, and intelligent energy management strategies remains a burning area to explore in the sincere pursuit of 

sustainable hybrid and electric vehicles [23]. 
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Figure 5: Multi-Vehicle Energy Management Strategies 

III. DEEP REINFORCEMENT LEARNING (DRL) APPROACHES FOR ECO-DRIVING 

 

Transfer learning and domain adaptation have been tried in the hopes of better generalization of DRL-based eco-driving 

policies across cities and routes, although distribution shifts in unseen traffic require fine-tuning [19]. However, hybrid 

DRL-model-based approaches have also been proposed, where DRL generates reference trajectories, while MPC executes 

final control; however, the coordination between learned- and model-based modules is limited [20]. DRL has also been 

applied to maximize low-level control in connected and automated vehicles by speed planning only, while classical 

controllers handle longitudinal and lateral dynamics, the performance of which significantly decreases due to actuator 

constraints and very high V2X communication latency [21]. Autonomous eco-driving within mixed traffic conditions has 

been examined on benchmark data such as pNEUMA, and on algorithms such as PPO and DDPG; however, these datasets 

lack real-world variability and sensor noise, limiting their use [22]. Multi-objective DRL with heuristic reward shaping has 

been introduced for achieving a trade-off between safety, efficiency, and comfort in urban eco-driving, but studies found 

this approach limited to the considered scenarios and not generalizable [23]. For heavy-duty vehicles such as electric buses 

or trucks, hierarchical DRL strategies are proposed, separating route-level planning from short-horizon control that includes 

regenerative braking, and real-world elements such as cargo load and road slopes are still insufficiently considered [24]. In 

the meanwhile, new benchmarks and simulation environments for evaluation of DRL-based eco-driving have been 

provided to allow for a more systematic comparison of algorithms, but the absence of standardized metrics to balance 

energy, comfort, and safety, combined with issues concerning reproducibility, is still a major bottleneck [25]. 

 

Table 1: Deep Reinforcement Learning (DRL) Approaches for Eco-Driving 
 

Ref Method / Approach Key Findings Results / Findings Limitations 

 

[19]  

Transfer learning & 

domain adaptation for 

DRL eco-driving 

Transfer learning improves 

policy generalization across 

cities/routes 

Better generalization in 

unseen environments 

Distribution shifts in 

unseen traffic still require 

fine-tuning 

 

[20]  

Hybrid DRL–model-

based eco-driving 

Combining DRL and model-

based control can improve 

trajectory tracking 

DRL generated 

reference trajectories; 

MPC executed final 

control 

Coordination between 

DRL and model-based 

modules is brittle 

 

[21]  

Hybrid DRL for low-

level CAV control 

Hybrid control enhances 

speed planning while 

retaining stability 

DRL + classical 

controllers; improved 

energy efficiency 

Actuator constraints limit 

DRL exploration; V2X 

latency reduces 

performance 

 

[22]  

DRL autonomous eco-

driving in mixed traffic 

using benchmark datasets 

(pNEUMA) 

DRL effectively learns eco-

driving behaviors from 

benchmark data 

PPO/DDPG reduced 

energy consumption in 

simulation 

Benchmark lacks real-

world variability and 

sensor noise 
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[23]  

Multi-objective DRL 

with heuristic reward 

shaping 

Heuristic reward shaping 

balances safety, comfort, 

and efficiency 

Improved urban eco-

driving performance in 

simulation 

Objective weighting 

scenario-dependent; lacks 

generality 

 

[24]  

Hierarchical DRL for 

electric buses and trucks 

Hierarchical structure allows 

separation of route-level and 

short-horizon control 

Improved energy 

efficiency; 

regenerative braking 

utilized 

Heavy-vehicle dynamics 

(cargo, slopes) not fully 

captured in simulations 

 

[25]  

DRL benchmarks and 

simulation environments 

Standardized simulation 

environments facilitate fair 

algorithm comparison 

Enabled systematic 

comparison of DRL 

algorithms 

Benchmarks lack 

standardized metrics 

combining energy, 

comfort, safety; 

reproducibility issues 

remain 

[26] Hybrid energy-

management strategy 

integrating Li-ion 

batteries & 

supercapacitors with 

ML-assisted control 

ML-assisted control 

improves energy capture 

and reduces battery stress 

Simulation shows 

improved peak-power 

handling and smoother 

energy distribution 

Large-scale on-vehicle 

trials and long-term 

reliability not reported 

[27] Comprehensive survey 

of battery–supercapacitor 

HESS 

Survey highlights key 

design considerations, 

sizing, and control 

strategies 

Comparative analysis 

of HESS topologies 

and energy/power 

efficiency 

No new experimental 

results; practical 

validation in EVs lacking 

[28] Predictive cruise control 

using ANN-based energy 

model with 

supercapacitor buffer 

Supercapacitors enhance 

energy recovery by 

absorbing/releasing braking 

pulses 

Simulation shows 

reduced battery load 

fluctuations and 

improved fuel 

economy 

Limited component-level 

characterization of 

supercapacitors; 

efficiency and thermal 

behavior not fully 

explored 

[29] Regenerative braking 

model for battery–

supercapacitor HESS 

with dynamic power-

sharing 

Dynamic power-sharing can 

reduce battery degradation 

and increase energy 

recovery 

Simulation indicates 

improvements in 

energy efficiency and 

battery cycle life 

Validation largely 

simulation-based; limited 

real-vehicle testing 

[30] Optimal sizing & control 

for stationary hybrid 

energy storage systems 

using supercapacitors 

Optimal sizing enhances 

energy recuperation and 

load handling 

Experimental testbed 

results confirm 

improved energy 

recovery 

Findings not directly 

generalizable to light-

vehicle dynamics 

[31] Graphene-derived 

electrodes for high-

energy supercapacitors 

Improved specific energy 

and power density; faster 

charge/discharge 

Electrochemical 

analysis shows 

enhanced braking 

energy capture 

Scalability to full 

automotive modules and 

real driving integration 

unproven 

[32] Survey of emerging 

supercapacitor devices 

and system-level 

applications 

Highlights materials, 

fabrication, energy 

management strategies, and 

system-level design 

considerations 

Comparative analysis 

of supercapacitor 

performance, cost, and 

energy density 

Translation from device-

level improvements to full 

system performance not 

experimentally validated 

[33] Battery–supercapacitor-

fed BLDC drive with 

HIL testing 

Hybrid HESS improves 

real-time energy efficiency 

and torque response 

Control strategies 

validated in hardware-

in-the-loop simulation 

Practical vehicle 

integration and cost 

implications not fully 

addressed 

[34] Comparison of 

supercapacitor and 

battery performance 

under regenerative 

braking 

Supercapacitors achieve 

faster charge acceptance 

and improved peak-power 

handling 

Simulation shows 

reduced battery stress 

and potential longer 

cycle life 

Long-term cycling 

effects, thermal 

management, and 

repeated braking 

reliability unexplored 

[35] Experimental test rig 

evaluation of 

supercapacitor module 

High-power pulses handled 

without significant 

degradation 

Voltage, current, and 

thermal behavior 

measured under 

various load profiles 

Vehicle integration, 

packaging constraints, 

and real-world application 

not addressed 
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[36] Nanosheet-based 

graphitic electrodes for 

regenerative 

supercapacitors 

High specific energy, fast 

charge/discharge, and stable 

cycling 

Electrochemical tests 

show improved 

capacitance and cycle 

stability 

Full-module scaling, 

automotive reliability, and 

long-term durability 

uncertain 

[37] Energy management and 

sizing for supercapacitor-

based HESS in DC 

traction 

Optimization strategies 

improve energy recovery 

and load balancing 

Simulation shows 

better hybrid storage 

ratios and converter 

selection 

Translation to passenger 

vehicles requires further 

investigation 

[38] Green-synthesized Ni–Fe 

LDH nanosheet 

electrodes for 

regenerative 

supercapacitors 

Eco-friendly synthesis with 

high capacitance 

Electrochemical tests 

show good rate 

capability and cycle 

stability 

Module-level balancing, 

ESR control, and large-

scale reliability not fully 

resolved 

[39] Broad review of 

regenerative braking and 

HESS 

Summarizes materials, 

control strategies, energy 

recovery mechanisms 

Highlights improved 

battery life, energy 

recuperation, system 

flexibility 

Experimental validation 

and practical solutions for 

cost/packaging gaps 

absent 

[40] Emerging high-energy-

density supercapacitor 

products 

Potential for regenerative 

braking in hybrid/pure EVs 

Evaluates energy 

density, power 

capabilities, and 

efficiency 

Reliant on manufacturer 

data; peer-reviewed 

validation needed for 

adoption 

[41] Advanced HESS control 

strategies and converter 

topologies 

Optimized energy flow and 

improved energy recovery 

(up to 40%) 

Simulation and bench 

testing confirm 

efficiency 

improvements 

Real-world performance, 

scalability, and economic 

feasibility not fully 

addressed 

 

The hybrid energy management strategy for Li-ion batteries and supercapacitors using another machine-learning 

paradigms-based control structure was proposed in order to capture maximum regenerative energy from braking events 

while minimizing battery stress for life extension. From simulations, the advantageous capability of peak power handling 

with smooth sharing of energy to the energy storage devices was noted, but large-scale testing and long-term reliability 

trials are not available yet [26]. An elaborate review of battery–supercapacitor HESS has addressed issues on sizing, control 

strategies, power electronics, and regenerative braking integration, with comparison and contrasted HESS topologies under 

different driving profiles that could highlight their potential benefits, but real EV evaluation remains scarce [27]. Predictive 

cruise control strategies with buffers in the form of supercapacitors have demonstrated improved energy recovery, reduced 

battery load variations, and hence thereby better fuel economy, emphasizing the need for correct energy estimations. Yet, 

the few characterizations of supercapacitors that include efficiency losses and thermal behavior hinder a great deal of their 

applicability [28]. 

 

Models for regenerative braking for battery supercapacitor HESS promise life optimization for the battery and 

maximization of energy recuperation by means of dynamic power transfer, but most of the validation is still simulation-

based and with very little road testing in real vehicles [29]. Optimal sizing and control methods that have been tested on 

stationary systems indicate improved recuperation, but generalizing to light vehicle dynamics is still left incomplete [30]. 

High-energy electrode materials such as graphene derivatives enable better charge-discharge rates and higher energy 

densities but are unvalidated in terms of being incorporated into complete automotive level modules, let alone in scaled-

up real-life testing scenarios [31]. Recent reviews into new supercapacitor technologies are also highlighting some issues 

such as thermal management, long-term durability, and system-level integration; with little experimental rehabilitation 

from material-level advancement [32]. The HILS test of hybrid supercapacitor-battery systems verified the energy recovery 

efficiencies and improvements in torque responses, but the large vehicle integration and cost feasibility remain unanswered 

[33]. 

 

Compared with regenerative braking, supercapacitors quickly accept charge and realize instantaneous peak power, thus 

reducing the aging of the batteries and improving their cycle life. Nevertheless, thermal management and long-term cycling 

performance are not adequately studied [34]. Experimental test rigs have shown that supercapacitors can take very high-

power pulses with negligible degradation, but packaging constraints and real-world implementations are not entirely 

addressed [35]. Nanosheet-based electrodes may present exciting possibilities for integration due to their high specific 

energy and stability, but whether they can hold durability under automotive conditions remains unknown [36]. Whereas 

optimization studies of energy management and sizing strategies for supercapacitor-based HESS in traction applications 

increase load balancing, more investigation must be conducted for passenger vehicles [37].  

 

These eco-friendly synthesized nanosheet electrodes for use in regenerative braking applications have shown strong 

capacitance and cycling stability, but module balancing and large-scale reliability continue to be areas of concern [38]. 

General reviews on regenerative braking systems point out an extension of battery life and energy recuperation as the major 
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benefits; however, packaging, costing, and thermal management issues are also highlighted [39]. In principle, high-energy-

density supercapacitors were envisioned to be efficient gadgets of energy conversion in hybrid and electric vehicles. Still, 

independent verification beyond that available from the manufacturer is necessary [40]. Lastly, energy recovery 

enhancements of up to 40% have been reported through the use of advanced control strategies and converter topologies, 

but remaining open discussions concern the scalability, economic feasibility, and real-life implementation of these 

approaches [41]. 

 

IV. ARTIFICIAL INTELLIGENCE IN ELECTRIC VEHICLES FOR MOBILITY OPTIMIZATION  
 

Human translation: For demand-side management inside microgrids via Generative AI and LLMs, focus has been laid upon 

EV charging synchronization. But whether it works in the big urban situation is still untested [42]. A hybrid approach 

involving LLMs and Graph Neural Networks (GNNs) reportedly outperforms traditional methods for EV charging 

optimization but has to be tested against real-time dynamic grid conditions [43]. Privacy-preserving predictive approaches, 

such as Federated Learning Transformer Networks (FLTN), have been put forth to predict EV charge location with high 

accuracy without risking user data, but whether this method can generalize despite changes in geographies has yet to be 

ascertained [44]. AI and ML were applied in scenarios of V2X to conduct proactive handover and resource allocation for 

conserving energy and with quality of service considerations. However, these methods have still to be extensively tested 

in different network environments [45]. Another generative AI approach has been used for energy optimization and vehicle 

design enhancements; yet many findings were limited because they relied quite heavily on statistical methods without much 

real-world validation [46]. Optimization frameworks based on AI for solar PV and battery energy storage systems promise 

smart EV charging for high-density residential places, whereas scaling that up for a larger urban deployment remains 

unaddressed [47]. 

 

Deep neural networks have been applied to scheduling EV ride-hailing fleet charging toward the objectives of cost and 

emission reduction, while lingering issues remain as to their applicability to fleets of different sizes and usage pattern [48]. 

AI-based methods of optimizing an EV charging network have been proposed for better efficiency and user experience 

based on real-time analytics, but the actual practical incorporation of such designs into real-time infrastructure poses major 

challenges [49]. Ambient-level studies describe the role of AI in future EV technology, in particular its integration with 

IoT and big data for advanced energy management systems, but many of such studies lack empirical validation [50]. And 

then, hybrid AI-based frameworks using reinforcement learning and grid-aware scheduling have been proposed for fine 

optimization of residential EV charging systems in real time, but have not yet been optimally challenged for robustness 

under diversifying grid conditions [51]. 

 

V. CONCLUSION AND FUTURE WORK   

 

This review discusses a range of energy-efficient eco-driving approaches for battery electric vehicles (BEVs), which 

combine MPC, DRL, and hybrid energy storage methods. The survey has found that MPC can perform short-term 

predictive optimization by modeling vehicle dynamics, gradients of the road, and traffic information within a constraint-

based setting. It works well and with varying degrees of success for predictive cruise control, adaptive energy management, 

and cooperative driving, yet its real-world application is problematic due to computational difficulties and the uncertainties 

of real-world environments. DRL, on the other hand, provides adaptability in complex and dynamic traffic situations via 

learning-based policy optimization. Although it has proven very useful in mixed traffic and urban scenarios, its training 

complexity, dependence on simulated environments, and limited scope to generalize to various real-world settings 

constitute some of the challenges still existing. Hybrid combinations of MPC and DRL use the strength of either, giving 

short-term accuracy and long-term adaptability. Back to the same analogy, hybrid energy storage systems that combine 

supercapacitors and batteries hold potential to optimize braking efficiency, reduce aging of batteries, and prolong system 

life. Recent advances in AI, including generative AI, federated learning, and graph neural networks, extend the possibilities 

for optimal EV charging, fleet management, and mobility services.The future must witness the development of robust, 

generalizable, and cheaper eco-driving frameworks that integrate MPC, DRL, and sophisticated HESS solutions. With 

future improvements, such implementations will go a long way toward energy-efficient and sustainable electric driving. 
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